

1

A micro-research on the materialities of programming languages
Using the example of an array in Java versus Python

by Anaïs Siebers & R. Melis Baydag

Introduction

This paper deals with the question of the materiality of programming languages. Based on
Paul Dourish’s book “The Stuff of Bits” (2017), key concepts of materiality in the digital
world will be analyzed in regard to programming languages. Different programming
languages are designed for different use-cases which influence their materiality. Furthermore,
the materiality of a programming language (time and place of invention, programming style,
communication system) influences the possibilities of working with these languages. As
Dourish (2017) points out “an algorithm as a program requires the programmer to incorporate
not just the algorithmic procedure itself but also the ancillary mechanisms needed to make it
operate” (p. 214). The materiality will be outlined based on a comparison of arrays, or data
structures, in the programming languages Java and Python.

A data structure in a programming language is used to store data to be able to work with
this data in the course of the program. “An array (more specifically) is a data structure that
holds similar, related data.”1 It can be compared with a cupboard where you have multiple
shelves to put things inside and get them back. Arrays can be one-dimensional or
multidimensional. For reasons of simplicity, we will focus on one-dimensional arrays.

What does an array look like? What does it do? An array saves data and returns the data at
a given position. Graphically, it could look like the table in Figure 1. In a programming
language, it could look like this: my_array = [“element1”, “element2”, “element3”]. This array has
three fields and stores one value in each field. One can access an element by using the index,
i.e., the position of the element: my_array[1] refers to “element2”. Furthermore, most
programming languages are zero-based, thus the index starts with zero, not one: my_array[0] =

“element1” (see Figure 1).

Figure 1 An array (my_array) with three fields, that contains an element each.

index 0 1 2

value of field with index element1 element2 element3

Figure 2 illustrates two possibilities to create an array in Java and Python2. On the left, a
Java array is created. Here, the first line initializes the array by stating that it is an array –

1 BBC. (n.d.). Programming techniques: Arrays. Retrieved on 11.07.2022 from:
https://www.bbc.co.uk/bitesize/guides/zfnny4j/revision/7
2 Python does not have built-in support for arrays. Here we use Python lists as arrays, because they act similar and are often
used analogously. Java has built-in arrays, but no built-in lists. Lists in Java are more complex data structures and require a

2

indicated by the squared brackets (int[]), which can only be filled with up to five integers (new

int[5]). This array is called javaArray1. In the next five lines, the fields are filled with integers by
accessing each field via its index (e.g. javaArray1[3] = 8;). Another possibility to create such an
array is to assign the values in order by using curly brackets: {1,5,3,8,1023}. On the right, a
python array is initialized. By assigning the squared brackets ([]), it is declared that
python_array_1 is an array. In the next five lines, the array is filled with a boolean value, an
integer, text and a decimal. The same array can be created by assigning the values in order
using squared brackets: [True,5,“text",10.23].

Figure 2 Arrays in Java and Python

Java Python

int[] javaArray1 = new int[5];
javaArray1[0] = 1;
javaArray1[1] = 5;
javaArray1[2] = 3;
javaArray1[3] = 8;
javaArray1[4] = 1023;

python_array_1 = []
python_array_1.append(True)
python_array_1.append(5)
python_array_1.append("text")
python_array_1.append(8)
python_array_1.append(10.23)

int[] javaArray2 = {1,5,3,8,1023}; python_array_2 = [True,5,“text",10.23]

Although arrays might seem very abstract, they can be used for a variety of use-cases. For
instance, imagine a marathon: the names of the participants competing can be saved in the
order of arrival. If John, Max and Julia participated in a race and Max would be the first, Julia
second and John the third person to arrive, Max would be saved at the first position
(participants[0] = “Max”), Julia at the second (participants[1] = “Julia”) and John at the third
(participants[2] = “John”). Using the index, one can retrieve the name of the person in the third-
place (participants[2]), which would be John (see Figure 3 The race scenario).

This is only a small example, but sometimes there are multiple large arrays containing
information that belong together. Imagine that there are two arrays: One array saves the
constellation of football matches (matches) and the other saves the corresponding outcomes
(results). Then, the index can help get corresponding values from two arrays: matches[i] will
retrieve information about the match i from the array matches and results[i] will retrieve the
results of the match i. In the given scenario, England and France ended in a draw (1:1) and
Germany lost against England (0:2) (see Figure 3 The match scenario).

Each programming language exhibits different material properties and different trade-offs
that will affect processing, storage, transmission, error detection, malleability and the range
of characteristics that might matter in different applications or use (Dourish, 2017, p. 17). The
next sections comparatively analyze particular materialities of programming languages
through the cases of Java and Python, and attempt to answer three main questions Paul

special import.We will further refer to Python lists as arrays in this context, because we concentrate the usage of these lists
as arrays.

3

Dourish focuses on in his book: The question of knowledge (What can you know? What must
you know?), the question of practice (How can you use it?) and the question of cooperation
(How does it make you cooperate?). To make the restrictions and possibilities imposed by the
digital representation (thus the materiality) of the array accessible, we will compare the
realization of the array in Java and Python, two widely known and distributed yet very
different programming languages.

Figure 3 Using arrays in two different scenarios that belong together

The race scenario3 The match scenario4

String[] participants = new String[3];
participants[0] = “Max”;
participants[1] = “Julia”;
participants[2] = “John”;

String[] matches = new String[12];
matches[0] = “ENG vs. FR”;
…
matches[11] = “GER vs. ENG”;

String[] results = new String[12];
results[0] = “1:1”;
…
results[11] = “0:2”;

Questions of Knowledge

What can you know?

Programmers can directly access certain information from the implementation and usage
of an array. The following example shows Python-code. An empty array is created and a
boolean value (True or False) is inserted. Thus, the array apparently has one element so far,
which is a boolean value and has to be at index 0:

python_array = []

python_array.append(True)

Now, we look at an example of an array in Java. Here the programmer directly sees that an
array with a size of five is created, so only five values can be saved. Furthermore, the
programmer knows which kind of data (data type) is saved in the array. In this case it is int
which stands for integer. We can further see that only the first value is assigned with the
number 1.

int[] javaArray = new int[5];

javaArray[0] = 1;

For programmers both examples are easy to understand. In cases where no values are
directly assigned to the array, it is crucial that the name of the array is self-explanatory.
Imagine an online shop. It is possible to add articles to the shopping basket, but initially it is
empty and it might also be empty after usage. Now, an array could save the items of your
basket, but it will only be created and cannot directly be filled with elements (shopping_basket =

[]). The elements will only be added later in the implementational procedure, if a customer

3 For both scenarios, Java will be used.
4 In this case String is used for reasons of simplicity – normally, dedicated classes would be used.

4

adds something to it. If multiple developers work on the same project not, it is important that
the name is self-explanatory, so that it is understandable, what the array is, what it is used for,
and so on. If, for example, another function such as “Delete all items from the shopping
basket” is added, the programmer has to know which array has to be emptied.

Looking at a computer program closely, what is visible or seems to be material to non-
programmers is quite different from the materiality of arrays. For instance, a person who
knows about functions or has pre-knowledge on basic math would find it easier to grasp the
structure of a programming language, such as Python, compared to a person that has no idea
about the subject. Similarly, a certain level of English language is helpful to understand
commands in a programming language. For non-programmers programming languages still
possess a certain visually recognizable structure in terms of how numbers, symbols, or colors
are organized, and they all together follow a pattern. Nevertheless, such visible features are
also broadly shaped by human expertise or organizational implementation processes.
Dourish’s conceptualization of materiality, on the other hand, proposes not to attend
exclusively to the sociality of what is virtual, as it actually hinders our understanding of their
materialities.

What must you know?

In order to work with programming languages, one must at least know how programming
and the underlying concepts work. Code represents a computer program. A computer code
refers to a set of rules or instructions defined by a programming language. These are made up
of words and numbers, and tell what the computer has to do, when they are put in the right
order.5 Therefore, the basic knowledge one has to possess is, among other things, the syntax
of the programming language, the semantics of the programming language, programming
conventions like naming of variables and functions, programming paradigms, and so on. The
following example can be given for naming conventions: In Java the name of the array starts
with a small letter and a new word is written without a separator (javaArray) but with a capital
letter, whereas in Python ‘_’ is used as a separator and no capital letters are used
(python_array). This example also shows how programming languages are used differently
which will be the topic of the next section.

Question of Practice – How can you use it?

In order to work with programming languages, one must at least know how to use the
language, which is already outlined before: “properties – reversibility, robustness, directness,
correspondence, and so forth – are essentially properties of specific digital materials”
(Dourish, 2017, p. 22). In the given example, there are various implications concerning the

5 BBC. (n.d.). What is code? Retrieved on 11.07.2022 from:
https://www.bbc.co.uk/bitesize/topics/z3tbwmn/articles/zykx6sg

5

usage of an array depending on the programming language used. There are simple differences
as to the way you can address data of an array. In Python it is possible to retrieve the last
element of an array by using -1: given the array my_array = [“element1”, “element2”, “element3”,

“last_element”], my_array[-1] thus returns “last_element”, an operation, which is not possible in
Java. Furthermore, in comparison with Java, Python also allows retrieval of a subarray:
my_array[1:3] returns [“element2”, “element3”, “last_element”]. Another difference, which is very
important in practice, is the size of an array and the data it contains. In Java the size of an
array is predefined and the data type of all elements in the array is given (in the examples
above it is int(eger)), which means that the developer does not need to test the values retrieved
from the array to know which methods and operations he can apply. To give an example, if
the value is an integer, numbers can be added, but adding a number to text (String) would
result in appending the number to the text. On the other hand, in a String, words can be
searched, yet this method leads to an error if performed on integers (see Figure 4).

Figure 4 Different methods and operations in an array

Addition with an integer-array Java6 Addition with a text-array Java

int[] numbers = new int[2];
number[0] = “3”;
number[1] = “1”;

int add_res = number[0] + 2;
// add_res=5 after this operation

boolean cont_res =
 number[1].contains(“Hello”);
// this will lead to an error

String[] texts = new String[2];
texts[0] = “Hi!”;
texts[1] = “Hello World!”;

String add_res = texts[0] + 2;
// add_res=“Hi!2” after this operation

boolean cont_res =
 texts[1].contains(“Hello”);
// cont_res=True after calling this function

To change the size of a Java array, developers have to create a new array that fits more
elements (in the example illustrated in Figure 4, the array was of size it was 2: new int[2]), if
the array should contain 7 elements, a new array has to be created and all values have to be
moved to the new array). But in Python, the size of the array is not predefined which means
that the number of elements can always be increased or decreased. “Studies of students
learning to write software suggest that the types of problems they encounter are coordinated
with the lexical properties of the programming languages they are using” (Dourish, 2017, p.
9). This can also be found in the given example. Whereas students using Java might expect
and encounter accessing a nonexistent index (for example: an array has a size of 4 and they
try to access my_array[1000]) or an empty field, Python students will not experience and care
about accessing empty fields. Accessing a nonexistent index means that an array of for

6 The text behind the “//” is called a comment and allows programmers to write texts and comments in code which do not
belong to the executed code.

6

example 5 was created in Java and then at a later position in the code, it is attempted to access
the element at index 10, which does not exist, because there are only 5 values.

Python students encounter the same problem. But they also encounter an additional error
concerning arrays. Compared to working with Java, in Python, they might not know the data
type of the value they retrieved. Because values of different data types can be added to one
array in Python (see Figure 2), accessing the first element may return an integer and the
second one might be text. This means python students cannot know how to operate on it: If
you, for instance, retrieve a number, then you can multiply, subtract or divide other numbers.
But if you retrieve a text, you will be able to do different things, such as searching in the text
(see Figure 4). Therefore, different operations are possible in Python depending on the
element retrieved and this influences the source of errors. If one does not know what kind of
element it is, one will check or assert in the code that the planned operation will work: “An
algorithm as a program requires the programmer to incorporate not just the algorithmic
procedure itself but also the ancillary mechanisms needed to make it operate” (Dourish, 2017,
p. 214). This is the case in Python, where developers usually nevertheless only use one
datatype in one array by convention. Moreover, this is why Python has an in-built method to
check for the data type or assert that the data type is the required data type.

The last aspect of this section is that Java allows you to randomly fill in values in an array.
Therefore, if one has 100 marathon participants, one can create an array for the order of
arrival at the finishing line. This means we create an empty array of the size 100. Now some
people have a health problem and quit during the race. In Java you can assign these persons
to the end of the array. But in Python, you have to manually create an array with 100 empty
objects (None) to be able to fill in the last or use a specific method called insert, which you can
first tell the position of the value to be added and then the value (see Figure 5).

Figure 5 Filling in values in an array

Java Python

String[] participants = new String[100];

participants[100] = “Max Mustermann”;
participants[99] = “Maria Musterfrau”;

participants = [None, None, None, None, None, None,
None, …, None, None, None]

participants[-1] = “Max Mustermann”
participants[99] = “Maria Musterfrau”

 participants = []
participants.add(“Max Mustermann”)
participants.insert(“Maria Musterfrau”)

If values are added in order, using the insert method in Python is comparable to Java. But
when adding values randomly (e.g., if each participant draws a ticket to get his starting

7

position and is saved at his starting position in the array), you have to create the empty array
in Python7 (see Figure 6).

Figure 6 Filling in values in an array randomly

Java Python

String[] participants = new String[100];

participants[42] = “Max Mustermann”;
participants[77] = “Maria Musterfrau”;

participants = [None, None, None, None, None, None,
None, …, None, None, None]

participants[42] = “Max Mustermann”
participants[77] = “Maria Musterfrau”

Question of Cooperation – How does it make you cooperate or work with others?

With regards to the question of cooperation, Java and Python allow a limited group of
people (mainly the developers, who work in these languages) to both communicate and work
with each other, even if they do not speak the same natural language. In this respect,
programming languages create some form of social interaction between people, who would
not be able to interact otherwise. In addition, different programming languages and
paradigms influence how people work on the code, how it is maintained and how the
workflow looks if bugs are fixed. Furthermore, how a programming language is used depends
on its purpose. With some programming languages, such as Python, it is possible to work
with large amounts of data, whereas Java is often used for business applications. Different
usages mean differences in the way programmers code. For instance, data analysis of a single
researcher in Python requires less cooperation than a big business application in Java, where
up to hundreds of developers have to cooperate, and the people starting the implementation
probably are not even in the team anymore.

It is the developers of programming languages (or committees), who define how
programming languages should work, e.g., what one has to write to create a variable.
Moreover, although there are certain things up to a programmer, the conventions (also
mentioned above) sort of create informal practices among developers, e.g., the naming
conventions of variables mentioned above. The following example from Oracle can be given
for naming conventions8:

 “Except for variables, all instance, class, and class constants are in mixed case with a
lowercase first letter. Internal words start with capital letters. Variable names should not start
with underscore _ or dollar sign $ characters, even though both are allowed.

Variable names should be short yet meaningful. The choice of a variable name should be
mnemonic- that is, designed to indicate to the casual observer the intent of its use. One-
character variable names should be avoided except for temporary "throwaway" variables.

7 Therefore, Python has another data type called dictionary, which would be preferred in this case. But dictionaries (dict) are
out of the scope of this article.
8 Oracle. (n.d.). 9 - Naming Conventions. Retrieved on 30.01.2023 from:
https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html

8

Common names for temporary variables are i, j, k, m, and n for integers; c, d, and e for
characters.”

The question of cooperation can also concern as to whether programming languages
possess a “performative aspect”, as illustrated by the author in the example of the
spreadsheets. Dourish (2017) focuses on how material forms perform as organizational tools,
how they are incorporated into our routines, practices and planning, or whether they create
new ways of working (pp. 82-83). Concerning their role in social organization, programming
languages themselves are not necessarily organizational tools, as we understand from the
example of the spreadsheets. They are rather used to create tools for, such as, managing
work, increasing efficiency and productivity, or enabling collaboration. In a way, they define
what organizational tools can do, how they do it and they create new ways of working, which
then determine organizational routines, practices and planning more indirectly, and most
importantly limit social interactions to the extent of the language’s capacities.

There has currently been an open-source movement, which is about publishing the code of
programs. The intention behind this is to keep the transparency of underlying algorithms and
reduce redundant programming by enabling the communities of developers to use it, while at
the same time contributing to the code (e.g., increasing robustness, fixing bugs and realizing
new features). Opposing this movement, there also are enterprises using certain programming
languages that are, for example, private (so, one has to pay licenses to be able to use them).
They might even encrypt their executable program code so that one cannot access their
algorithms. Returning to our example of Python and Java, both are free programming
languages and are used for proprietary as well as open-source projects. Python is a script-
language and as such directly executable. Java on the other hand needs to be compiled first.
This means that the human-readable code is translated to machine-readable code, which also
improves the running-time. But this can be encrypted so that you are not able to decompile
the code to retrieve the original code.

Conclusion

In this research we explored arrays in programming languages Java and Python, and raised
key questions on materiality of these two programming languages based on what Dourish
(2017) poses in his descriptive analysis on the materiality of the digital: What can you know
by looking at arrays in both Java and Python? and How can you use arrays (differently)? Our
comparative case study highlighted several findings on what the two programming languages
allow one to know or do within the framework of their materialities.

On materiality, reflecting on Goody (1977), Dourish (2017) argues that "... what can be set
out on the page—with the representational capacities of different lexical devices—shapes
what can be known. These lexical devices become information technologies with associated
material properties. While lists suggest hierarchies, columns create paths for addition and
subtraction; lines and arrows enable categories and groupings. Such devices provide written
texts with logics of manipulability and preconceived relations" (p. 9). As we illustrated in our

9

examples, the usage of a programming language depends on the possibilities and limitations
the implementation of an array imposes. Relatedly, materiality of each programming
language is restrained by differences in terms of the syntax, the semantics and how
conventions of the language are named. For example, one can create an empty array of a
specific size and already enter values for high indices in Java, whereas one can therefore put
data with different data types in a Python array.

It should be noted that materialities of programming languages come about in our social
organizational life as well. In his work, Dourish (2017) does not necessarily overlook
“[the]complex and evolving relationship between forms and possibilities of digital materials
and the shape of human practices that create and respond to them” (p. 25). Both Java and
Python, as digital materials, have a degree of sociality depending on the knowledge of the
human users or the social organization that they are embedded in. The purpose of a
programming language might define how working among developers should be like in the
sense of whether it requires an intensive cooperation among large groups of developers or a
single researcher should be enough. Nonetheless, following Dourish’s conception, the main
point of our research was to inquire what the programming language allows one to know, or
make one know and do, that is, how their materiality comes about.

The micro research on the arrays in Java and Python concludes that these languages
themselves make you able to use them in certain ways and not others. It exemplified, as
Dourish (2017) points out, “ways in which representational forms, their associated material
properties and knowledge practices are coupled” (p. 9). It emphasized that material properties
of programming languages are beyond those that are immediately visible to people when they
interact with or use them. They rather possess their “internal representations” as digital
information systems - that is, their own materialities.

References

BBC. (n.d.). Bitesize. https://www.bbc.co.uk/bitesize

Dourish, P. (2017). The Stuff of Bits. An Essay on the Materialities of Information.
Cambridge, MA: MIT Press.

Goody, J. (1977). The Domestication of the Savage Mind. Cambridge, UK: Cambridge
University Press.

